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Abstract—In this abstract, we present a modular state estima-
tion framework for legged robots that decouples floating-base
orientation estimation—handled via an invariant EKF—from
the estimation of physical quantities such as contact forces and
inertial parameters using a Moving Horizon Estimation (MHE)
approach. This design leverages system symmetries and naturally
incorporates robot dynamics and deterministic constraints. Build-
ing on prior hardware validation, we further integrate recent
advances in differential dynamics and numerical optimization to
model contact interactions within the estimation process.

Project Repositories: [State MHE], [Force State MHE].

I. INTRODUCTION

Legged robot state estimation typically focuses on recov-
ering the floating base states using a relatively compact set
of onboard sensors. Recent advances in exploiting symmetry
properties have improved the accuracy of both proprioceptive-
only estimators [1] [2] and those incorporating exteroceptive
sensors [3], enabling robust pose estimation across a range
of operational scenarios. Unlike wheeled or aerial platforms,
legged robots are commonly modeled with hybrid dynamics in
control applications due to the discrete nature of foot-ground
interactions. In contrast, the differences in state estimation
across platforms often stem more from the types and configu-
rations of available sensors than from fundamental differences
in system dynamics. While traditional estimators have pri-
marily focused on pose estimation, recent work has extended
legged robot state estimation to include contact/disturbance
force [4] and even inertial parameter identification [5] by
leveraging contact-rich dynamics.

Despite these advances, effectively incorporating complex,
and potentially hybrid, dynamics into real-time estimation
frameworks remains a significant challenge. This motivates
further investigation into structured estimators—such as those
based on invariant filtering/smoothing or moving horizon
estimation (MHE)—that can better exploit the physical and
geometric structure of legged locomotion systems.

However, the symmetry structure of legged robots under
hybrid dynamics remains insufficiently understood. To address
this, we adopt a decoupled approach [6], [7]: the floating-base
state is estimated using a well-established invariant EKF [8],
while a Moving Horizon Estimation (MHE)-based optimiza-
tion framework flexibly estimates physical quantities such as
contact forces. This modular design improves adaptability and
has been shown to naturally incorporate robot dynamics and
deterministic constraints in previous work. Building on this
foundation, recent advances in differential contact dynamics

Fig. 1. Illustration of the proposed decoupled estimation framework applied
to various legged robots. Experimental results are also available in [6] and [7].

[9] and numerical optimization [10] further enable seamless
integration of contact dynamics into the framework.

In this abstract, we present three formulations of the pro-
posed optimization-based estimator: (i) floating base state-only
estimation [6], (ii) simultaneous estimation of state and ground
reaction forces [7], both from prior work, and (iii) preliminary
results of a unified estimator that jointly recovers state, contact
interactions, and parameters of physical models.

II. BACKGROUND

A. Symmetry-Aware Estimation

Symmetry-Aware Estimation—specifically, invariant esti-
mation methods—leverages the Lie group structure of robotic
systems to enhance robustness and consistency. The Invariant
Extended Kalman Filter (InEKF) exploits the group-affine
property to construct autonomous error dynamics that are
independent of the current state estimate, resulting in more
accurate linearization [1]. Similarly, invariant smoothers use
group-affine residuals with state-independent Jacobians, pro-
viding improved numerical conditioning and faster conver-
gence within a history-preserving smoothing framework [11].
These characteristics make invariant estimator especially well-
suited for contact-rich, highly dynamic environments [2], [8].

B. Optimization-based Estimation

Moving Horizon Estimation (MHE) and factor graph-based
methods are both classical smoothing approaches that optimize
over a sliding window of sensor data. Factor graphs, originat-
ing from the SLAM domain, typically assume a fixed structure
and have been widely used to tightly fuse vision, IMU, and
encoder measurements through preintegration [12]. However,
its relatively fixed structure limits their flexibility in handling
complex constraints or integrating with advanced numerical
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optimization techniques, such as shooting methods [10], [13].
Moreover, little research has been conducted on leveraging
system symmetries within the factor graph framework.

In contrast, MHE offers a more flexible optimization frame-
work. As the dual of Model Predictive Control (MPC), MHE
naturally incorporates robot dynamics and physical constraints,
making it particularly well-suited for legged robots with
contact-rich dynamics [14]. Unlike factor graphs, MHE can
directly encode hybrid dynamics and contact constraints, pro-
viding improved consistency and constraint handling. Recent
advances in computational techniques from the control domain
[10] [15] may also advance the computation of MHE.

III. CONTACT INVOLVED ESTIMATION

This work aims to estimate both the robot state and its
contact interactions with the environment. By leveraging robot
and Linear Complementarity Problem based contact dynamics,
along with onboard proprioceptive and exteroceptive measure-
ments, we estimate the robot state and contact interactions
without relying on high-fidelity force/torque sensing [6] [7].

A. Dynamics Modeling

1) Lagrangian Dynamics Modeling in Continuous Domain:
The configuration of a legged robot is typically represented
as x =

[
q⊺ v⊺

]⊺
, where q ∈ SE(3) × Rn denotes the

generalized coordinates, including the floating-base pose p and
R, and the joint positions α, with n representing the number
of actuated joints. The generalized velocity is given by v ∈
se(3)×Rn, comprising both the base twist and joint velocities.
Under the assumption of known and static contact interactions,
the holonomic constrained Lagrangian dynamics of the rigid
body system in continuous time can be expressed as:

M(q)v̇ + h(q,v) = Bu+
∑

i Ji(q)
⊤fi, (1)

Ji(q)v̇ + ˙J(q)v = 0, (2)

where the term M(q) ∈ R(6+n)×(6+n) represent the inertia
matrix, and h(q,v) is the bias vector including Coriolis,
centrifugal and gravitational effects. The input matrix B ∈
R(6+n)×n maps the joint torque vector u to the generalized
force space. The term fi ∈ R3 represents the contact force
or ground reaction force (GRF) at the i-th contact point, and
Ji(q) ∈ R3×(6+n) is the associated contact Jacobian.

2) Contact Dynamics Modeling via LCP: For rigid body
systems modeled by Lagrangian dynamics, the continuous-
time dynamics can be approximated by a discrete-time system
using a semi-implicit Euler integration scheme:

q+ − q = ∆tv+,

M(q)(v̇+ − v̇) = ∆t
(
Bu− h(q,v) +

∑
i Ji(q)

⊺fi
)
,

(3)

where ∆t denotes the discrete time interval used for integra-
tion. Instead of enforcing holonomic constraints—since the
contact mode is not known a priori—the contact impulse ∆t fi
is computed using a time-stepping formulation of the Linear
Complementarity Problem (LCP) based on a rigid contact
model and polyhedral approximated friction cone [16].

Non-penetration: For contact at the next time step (·)+, both
the signed distance between two bodies ϕ(q+) and the normal
contact force fn during the interval must be non-negative.
Moreover, normal contact forces can only be nonzero when
two bodies are in contact: ϕ(q+) ≥ 0 ⊥ fn ≥ 0. A linear
approximation of this condition is used for computation:

ϕ(q) +∇ϕ(q)(q+ − q) ≥ 0 ⊥ fn ≥ 0. (4)

Maximum Dissipation: The maximum dissipation principle
assumes that tangential friction forces act to maximize the
dissipation of kinetic energy. For clarity, the formulation is
presented for a single contact scenario:

min
β

f⊺i Ji(q)v̇
+ (5)

s.t. f = nfn +Dβ, β ≥ 0, (6)
µfn − e⊺β ≥ 0. (7)

The Coulomb friction model is approximated using a polyhe-
dral cone, where n is the unit normal vector at the contact
point, and D positively span the tangential contact plane with
unit vectors. The vector β represents the friction force coeffi-
cients along the directions defined by D, µ is the coefficient
of friction, and e is a vector of ones.

The Karush–Kuhn–Tucker (KKT) conditions of the result-
ing minimization problem, when combined with the discrete-
time robot dynamics (3) and the non-penetration condition (4),
define the contact dynamics as:

x+ = LCP(x,u). (8)

The LCP-based contact dynamics admit analytical gradients,
which can be leveraged to accelerate numerical performance
in optimization based algorithm [9].

B. Measurement Modeling

1) IMU Model: In general, a discrete time single rigid body
(SRB) dynamics model is used to model the IMU:

p+

ṗ+

R+

b+
a

b+
ω

 =


p+∆tṗ+ 1

2∆t2
(
R(ã− ba) + g

)
ṗ+∆t

(
R(ã− ba) + g

)
R Exp

(
∆t(ω̃ − bω)

×)
ba

bω

⊕δIMU, (9)

where p, R, ba, and bω denote the floating-base (or IMU)
position, orientation, accelerometer bias, and gyroscope bias,
respectively. The operator Exp(·) denotes the matrix exponen-
tial, and (·)× represents the skew-symmetric matrix associated
with the given vector. ⊕ is the additive operator on manifold.
δ denotes the associated Gaussian noise.

2) Encoder and Kinematics Model: The legged robot is
equipped with joint encoders that measure joint angles α and
angular velocities α̇, both corrupted by Gaussian noise:

α̃ = α+ δα, ˙̃α = α̇+ δα̇. (10)



Given known leg kinematics, the foot’s relative position and
velocity in the body frame can be expressed as:

R⊺(pfoot − p) = fkB(α̃) + δpf, (11)

R⊺(ṗfoot − ṗ) = JB(α̃) ˙̃α+ (ω̃ − bω)
×fkB(α̃) + δvf, (12)

where fkB(·) and JB(·) are the foot’s forward kinematics and
Jacobian, respectively in body frame B. The noise terms cap-
ture uncertainties from encoder noise, IMU noise, calibration,
and model inaccuracies [17].

3) Visual Odometry Model: Visual Odometry (VO) mea-
sures the robot pose in the camera frame C by tracking features
in the images from onboard cameras. Without loop closure
[18], the VO output is interpreted as the incremental homoge-
neous transformation between consecutive camera frames Ci
and Cj : TCij = T−1

WCi
TWCj

⊕ δVO, where TWCi
and TWCj

are the homogeneous transformations from the world frame W
to the camera frame C at time i and j. The VO measurement
is corrupted by noise δVO. With known fixed transformation
TBC between IMU/body frame B and camera frame C, the
body frame transformation TBij

is used as measurements:

T̃Bij = TBCT̃CijT
−1
BC . (13)

C. Invariant EFK for Floating-base Estimation

The InEKF exploits the symmetry of a system represented
by a matrix Lie group. Based on the IMU/SRB model, the IMU
states without additive bias are embedded in the extended spe-
cial Euclidean group with additional spatial vectors, denoted
as SE2(3) [8]:

X :=

 R ṗ p
01×3 1 0
01×3 0 1

 . (14)

In the absence of additive bias, the IMU state dynamics are
group-affine. The right-invariant error, defined as η,

η = X̂X−1 =

R̂R⊤ ˆ̇p− R̂R⊤ṗ p̂− R̂R⊤p
01×3 1 0
01×3 0 1

 , (15)

evolves according to an autonomous system. The log-linear
property of this error propagation enables the formulation
of the standard Invariant Extended Kalman Filter (InEKF)
[1]. For legged robots with IMU bias and kinematic mea-
surements, [8] extends the standard InEKF and demonstrates
prominent performance. In this work, we adopt the InEKF de-
veloped in [8], with an additional velocity correction based on
leg kinematics, to provide lightweight orientation estimation.

D. Real-time Optimization-based Estimation

Moving Horizon Estimation (MHE) is formulated as an op-
timization problem that minimizes the negative log-likelihood
of the Maximum A Posteriori (MAP) estimate over a receding
time window [19], as illustrated in Fig. 2. The optimization

Fig. 2. Illustration of MHE, arrival cost Γ and their relationship with Full
Information Estimation, where x̂i|k , {i, k ∈ N+| 0 ≤ i ≤ k ≤ T} is the
estimate at time index i, using measurements from time 0 to time k.

incorporates both the system dynamics (Section II.A) and
measurement models (Section II.B):

min
x,δ[T−N,T ]

Γ(xT−N )

+

T−1∑
k=0

||δxk ||2Cov−1
x

+

T∑
k=0

||δyk ||
2
Cov−1

y
(MHE)

s.t. xk+1 = Dyn(xk,uk)⊕ δxk , ∀k ∈ {T −N, ..., T − 1}
yk = Meas(xk)⊕ δyk , ∀k ∈ {T −N, ..., T},
0 ≤ Constr(xk), ∀k ∈ {T −N, ..., T}.

The arrival cost term Γ(·) is computed using an Extended
Kalman Filter or derived following the procedure outlined
in our previous work [6]. To meet real-time requirements
that exceed the control frequency, we either exploit invariant
properties through decentralization or leverage differential
structure to enable fast numerical computation.

1) Decentralized MHE as Quadratic Program: In our prior
work [6], the decentralized MHE framework uses a standalone
InEKF for accurate and well-converged orientation estimation.
This decentralization enables the dynamics and measurement
models in Sections III.A and III.B to be reformulated as linear
constraints within the MHE, which is subsequently cast as a
convex Quadratic Program (QP). To further construct a convex
optimization problem that accounts for the robot dynamics in
(1) and contact dynamics in (8), the estimation of contact mode
and joint states is also decoupled using direct measurements
results from pressure sensors and joint encoders [7].

2) Nonlinear MHE through Differential Dynamic Program-
ming: By leveraging the differential properties of the robot
dynamics (1) or the contact dynamics (8), the nonlinear
optimization problem (MHE) can be efficiently solved us-
ing Differential Dynamic Programming (DDP), even in the
presence of complementarity constraints introduced by contact
dynamics. By analyzing the Bellman equation of (MHE), the
value function can be recursively expressed as:

V (x) = min
δ

Q(x, δ), (16)

Q(x, δ) = V +(x+) + L(x, δ), (17)

where V (x) is the value function, and Q(x, δ) is the unop-
timized value function. In DDP, the model uncertainty δ is
computed to minimize the local second-order approximation



of Q at the current estimated trajectory (̂·):

Q(x, δ) ≈ Q(x̂, δ̂) + ∆Q, (18)

∆Q =
1

2

 1
δx
δδ

⊺  0 ∇xQ
⊺ ∇δQ

⊺

∇xQ ∇2
xQ ∇xδQ

∇δQ ∇δxQ ∇2
δQ

 1
δx
δδ

 . (19)

Minimizing ∆Q w.r.t. δδ yields the optimal uncertainty:

δδ∗ = K · δx+ αk, (20)

K = −∇2
δQ

−1∇δxQ, k = −∇2
δQ

−1∇δQ.

When applying DDP to state estimation, the initial state is
assumed to follow a prior distribution Γ(·), as indicated in
(MHE). During DDP, the optimal perturbation to the initial
state δx0 is generally non-zero and is computed as:

δx∗
0 = −

[
∇2

x0
V
]−1 ∇x0

V. (21)

IV. EVALUATION

A. Prior Results

In our previous work, we evaluated the proposed estimation
framework on the commercial quadrupedal robot Unitree Go1
in two scenarios: (i) robot state-only estimation [6] and (ii)
simultaneous estimation of robot state and ground reaction
forces [7]. To address the computational challenges of the
canonical optimization-based estimator (MHE), we adopted a
decentralized structure as described in Section III.D.1), lever-
aging system symmetry by decoupling orientation estimation
using a standalone InEKF, as detailed in Section III.C.

The estimator is implemented in C++ within ROS2 envi-
ronment. The MHE is solved using OSQP [20], and VO is
provided by the open-source ORB-SLAM3 [18]. The InEKF
is adapted from the open-source implementation in [8]. The
MHE runs at 200 Hz. The complete software implementation
for both scenarios is publicly available at [21], [22].
Robot State Estimation: For robot state estimation, our
method outperforms the EKF [23] and InEKF [8] baselines
that fuse IMU and leg odometry as indicated in Table. I. We
further evaluate MHE estimation accuracy and computation
time in Fig. 3 by varying the window size from 1 to 20. The
RMSE improves with larger windows due to the inclusion of
more VO frames, highlighting the benefit of MHE in leverag-
ing windowed measurements for precise state estimation.

TABLE I
RMSES OF THE STATE ESTIMATIONS ON GO1 HARDWARE.

Estimation Our Method Our Method EFK InEKFMethod (w/o VO)
RMSEṗ [m/s] 0.0654 0.0847 0.0901 0.0817

RMSEEuler [rad] 0.0160 0.0230 0.0218 0.0157

TABLE II
RMSES OF THE STATE AND FORCE ESTIMATIONS ON GO1 HARDWARE.

Estimation Our Method Our Method DKF MBOMethod (w/o Phys.)
RMSEṗ [m/s] 0.0504 0.0497 0.0628 NA
RMSEf [N] 6.6790 11.2255 10.1594 12.7229

Robot State and GRF Estimation: For robot state and GRF
estimation, we use the same onboard sensing configuration

Fig. 3. Window size effects. (a) Accuracy improves w.r.t. window size. (b)
Computational cost increases approximately linearly w.r.t. window size.

Fig. 4. (a) Particle experiment illustration; (b) Inertial parameter estimation
result; (c) State estimation result. The estimated inertial parameters converge
to the ground truth, and the state trajectory also aligns with the true trajectory
with updated contact mode.

as in the robot state estimation task. As shown in Table II,
compared to baseline momentum-based methods [4] [24], ex-
teroceptive sensors enhance estimation accuracy, while contact
constraints further enforce physical consistency.

B. Preliminary Results

Robot State, Contact Model and Physical Parameter
Estimation: For robot state, contact mode and parameter
estimation, contact dynamics are incorporated into the MHE
framework. All physical constraints are embedded within the
LCP formulation, resulting in a dynamics-constrained win-
dowed optimization problem solvable via DDP. The simulation
and estimation are implemented in MATLAB, with the DDP
implementation adapted from [25]. Leveraging its differential
structure and smoothed analytical gradients [26], the proposed
method successfully recovers the trajectory, contact mode, and
inertial parameters in a scenario where a particle is dropped
and pushed on a frictional surface. As illustrated in Fig. 4, the
particle mass is estimated from biased initial guesses, with
corresponding refinements in contact mode and state.

V. FUTURE WORK AND DISCUSSION

In this work, we presented a Moving Horizon Estimation
(MHE) framework that incorporates robot and contact dynam-
ics. System symmetry is addressed through decoupled orienta-
tion estimation using a standalone InEKF. Building on existing
hardware and simulation results, our ongoing efforts aim to
evaluate the proposed contact-aware MHE on real hardware
with real-time implementation. Future directions include incor-
porating invariant cost terms into the MHE to further enhance
estimation consistency [2], and more deeply exploiting the
symmetry inherent in legged robot dynamics. We also aim
to extend this framework to contact-rich scenarios in robot
manipulation [27] and aerial robotic manipulation [28].
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